51 research outputs found

    Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators

    Get PDF
    The complexity of forward kinematic modelling increases with the increase in the degrees of freedom for a manipulator. To reduce the computational weight and time lag for desired output transformation, this paper proposes a forward kinematic model mapped with the help of the Radial Basis Function Neural Network (RBFNN) architecture tuned by a novel meta-heuristic algorithm, namely, the Cooperative Search Optimisation Algorithm (CSOA). The architecture presented is able to automatically learn the kinematic properties of the manipulator. Learning is accomplished iteratively based only on the observation of the input–output relationship. Related simulations are carried out on a 3-Degrees of Freedom (DOF) manipulator on the Robot Operating System (ROS). The dataset created from the simulation is divided 65–35 for training–testing of the proposed model. The metrics used for model validation include spread value, cost and runtime for the training dataset, and Mean Relative Error, Normal Mean Square Error, and Mean Absolute Error for the testing dataset. A comparative analysis of the CSOA-RBFNN model is performed with an artificial neural network, support vector regression model, and with with other meta-heuristic RBFNN models, i.e., PSORBFNN and GWO-RBFNN, that show the effectiveness and superiority of the proposed technique.publishedVersio

    Adaptive ML-based technique for renewable energy system power forecasting in hybrid PV-Wind farms power conversion systems

    Get PDF
    Large scale integration of renewable energy system with classical electrical power generation system requires a precise balance to maintain and optimize the supply–demand limitations in power grids operations. For this purpose, accurate forecasting is needed from wind energy conversion systems (WECS) and solar power plants (SPPs). This daunting task has limits with long-short term and precise term forecasting due to the highly random nature of environmental conditions. This paper offers a hybrid variational decomposition model (HVDM) as a revolutionary composite deep learning-based evolutionary technique for accurate power production forecasting in microgrid farms. The objective is to obtain precise short-term forecasting in five steps of development. An improvised dynamic group-based cooperative search (IDGC) mechanism with a IDGC-Radial Basis Function Neural Network (IDGC-RBFNN) is proposed for enhanced accurate short-term power forecasting. For this purpose, meteorological data with time series is utilized. SCADA data provide the values to the system. The improvisation has been made to the metaheuristic algorithm and an enhanced training mechanism is designed for the short term wind forecasting (STWF) problem. The results are compared with two different Neural Network topologies and three heuristic algorithms: particle swarm intelligence (PSO), IDGC, and dynamic group cooperation optimization (DGCO). The 24 h ahead are studied in the experimental simulations. The analysis is made using seasonal behavior for year-round performance analysis. The prediction accuracy achieved by the proposed hybrid model shows greater results. The comparison is made statistically with existing works and literature showing highly effective accuracy at a lower computational burden. Three seasonal results are compared graphically and statistically.publishedVersio

    Eye and Voice-Controlled Human Machine Interface System for Wheelchairs Using Image Gradient Approach

    Get PDF
    © 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Rehabilitative mobility aids are being used extensively for physically impaired people. Efforts are being made to develop human machine interfaces (HMIs), manipulating the biosignals to better control the electromechanical mobility aids, especially the wheelchairs. Creating precise control commands such as move forward, left, right, backward and stop, via biosignals, in an appropriate HMI is the actual challenge, as the people with a high level of disability (quadriplegia and paralysis, etc.) are unable to drive conventional wheelchairs. Therefore, a novel system driven by optical signals addressing the needs of such a physically impaired population is introduced in this paper. The present system is divided into two parts: the first part comprises of detection of eyeball movements together with the processing of the optical signal, and the second part encompasses the mechanical assembly module, i.e., control of the wheelchair through motor driving circuitry. A web camera is used to capture real-time images. The processor used is Raspberry-Pi with Linux operating system. In order to make the system more congenial and reliable, the voice-controlled mode is incorporated in the wheelchair. To appraise the system’s performance, a basic wheelchair skill test (WST) is carried out. Basic skills like movement on plain and rough surfaces in forward, reverse direction and turning capability were analyzed for easier comparison with other existing wheelchair setups on the bases of controlling mechanisms, compatibility, design models, and usability in diverse conditions. System successfully operates with average response time of 3 s for eye and 3.4 s for voice control mode.Peer reviewedFinal Published versio

    Assessment of Human Health Risk of Zinc and Lead by Consuming Food Crops Supplied with Excessive Fertilizers

    Get PDF
    For the study of heavy metals impact on human beings, areas in Sargodha city that were supplied with various types of fertilizers were chosen. The three industrial areas; (Bhalwal, Sillanwali, and Sahiwal) of this city were explored for research reasons. The researchers wanted to know how much heavy metal was in the soil, food crops, and human. Excess fertilizer use contributes to global pollution. Farmyard manure, urea, and potassium chloride were used on Site 1; urea phosphate, manure, and ammonium sulphate were used on Site 2; and super phosphate, ammonium phosphate, and nitrate phosphate were used on Site 3. Samples of commonly used food crops, their respective soils and blood of residents who ingested the food crops of the studied area were collected. The zinc and lead levels in soil (8.30-16.80 and 1.80-12.71 mg/kg) and food crops (0.26-2.02 and 2.26-4.70 mg/kg) were far lower than WHO permitted limits. Blood mean concentration of both Zn (2.30-4.30 mg/L) and Ni (0.24-0.70 mg/L) were found maximum in residents of Site 3. The values of pollution load index, bioconcentration factor, enrichment factor for both zinc and lead were (0.18-0.37 and0.220-0.948), (0.027-0.138 and 0.316-1.705), (0.020-0.144 and 0.515-2.780), respectively. Daily intake of metal (0.004-0.008 and 0.001-0.002 mg/kg/day) and health risk index (0.0001-0.016 and 0.005-0.115) values were observed to be lower in individuals for Zn and Pb, respectively. In present work values of all pollution indices wereSo, there would be no human health hazard

    Effects of Fertilizers on Copper and Nickel Accumulation and Human Health Risk Assessment of Vegetables and Food Crops

    Get PDF
    Despite the fact that fertilizers have been used for millennia for sustainable crop production, this high and considerable dependence on fertilizers heightens environmental concerns with the indirect human exposure due to accumulation of toxins in food chain via soil contamination. The purpose of this study is to evaluate the application of fertilizers to the soil and their effect on the accumulation of copper and nickel in spinach (Spinacia oleracea), garlic (Allium sativum), wheat (Triticum aestivum), maize (Zea mays), and barley (Hordeum vulgare); as well as potential health concerns associated with consuming vegetables cultivated on this contaminated land. Samples of available soil, food crops, and human blood were collected from three different Tehsils: Bhalwal, Sahiwal, and Silanwali and were regarded as site 1, site 2 and site 3 respectively. Urea, farmyard manure, and potassium chloride were delivered to Site 1; urea phosphate, manure, and ammonium sulphate were delivered to Site 2; and superphosphate, ammonium phosphate, and nitrate phosphate were delivered to Site 3. Data was subjected to statistical analysis for computing out ANOVA and correlation. Analysis revealed that minimum copper concentration was found in the soil of T. aestivum grown at Site-1 while the inhabitants of Site 3 had the highest concentration of Cu in their blood. The highest level of HIR was found in the human beings that ate the S. oleracea grown at Site 3. It is strongly advised that fertilizers be used sparingly, as their excessive use can cause human health risks

    Agronomic and physiological indices for reproductive stage heat stress tolerance in green super rice

    Get PDF
    Optimum growing temperature is necessary for maximum yield-potential in any crop. The global atmospheric temperature is changing more rapidly and irregularly every year. High temperature at the flowering/reproductive stage in rice causes partial to complete pollen sterility, resulting in significant reduction in grain yield. Green Super Rice (GSR) is an effort to develop an elite rice type that can withstand multiple environmental stresses and maintain yield in different agro-ecological zones. The current study was performed to assess the effect of heat stress on agronomic and physiological attributes of GSR at flowering stage. Twenty-two GSR lines and four local checks were evaluated under normal and heat-stress conditions for different agro-physiological parameters, including plant height (PH), tillers per plant (TPP), grain yield per plant (GY), straw yield per plant (SY), harvest index (HI), 1000-grain weight (GW), grain length (GL), cell membrane stability (CMS), normalized difference vegetative index (NDVI), and pollen fertility percentage (PFP). Genotypes showed high significant variations for all the studied parameters except NDVI. Association and principal component analysis (PCA) explained the genetic diversity of the genotypes, and relationship between the particular parameters and grain yield. We found that GY, along with other agronomic traits, such as TPP, SY, HI, and CMS, were greatly affected by heat stress in most of the genotypes, while PH, GW, GL, PFP, and NDVI were affected only in a few genotypes. Outperforming NGSR-16 and NGSR-18 in heat stress could be utilized as a parent for the development of heat-tolerant rice. Moreover, these findings will be helpful in the prevention and management of heat stress in rice

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial
    corecore